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We want this thing to be ‘secure’.
But what does it mean secure?
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Introduction

Definition Attempt 1

It must be hard, without k, to recover x from Enc(x).

Consider the following: Enck(x1[[x2) = (x1 & k|x2).
‘We will attack at dawn’ = ‘bdk8k4s0/Q1ack at dawn’

Definition Attempt 2

It must be hard, without k, to recover any information about x
from Enc(x).

Consider the OTP: Ency(x) = (

x®
‘5dk8k4s01Q1t6ss3hz01" = Length(x) =

k).
20 Bytes
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Classical Semantic Security

Game-based security: A and S play an interactive game in two
different ‘worlds’ against C.
SEM challenge query: A sends C challenge template:
e a message distribution X on plaintext space M,
e an advice function h: M — N,
e a target function f : M — N.

C samples x <— X and sends back (Enck(x), h(x)) to A,
but S only gets h(x). The goal is to compute f(x).

Classical Semantic Security (SEM)

For any efficient adversary A there exists an efficient simulator S
such that:

|Pr[A(Enck(x), h(x)) = f(x)] — Pr[S(h(x)) = f(x)]| < negl(n).
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Adversary's world Simulator's world
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This definition is cumbersome.
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Classical Indistinguishability

IND challenge query: A sends C two plaintexts xg, x; € M.

C flips a random bit b & {0,1}, computes y < Enck(xp), and
finally sends ciphertext y to A.

A's goal is to guess b.

Classical Indistinguishability (IND)

For any efficient adversary A and any xg, x; € M:

PrLA() = b] - 5| < negl (n).
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Classical Indistinguishability

Distinguisher
1k
Xo, X4 $
———> b-2{0,1)
#
?b
IND «<— SEM. \

(many other equivalent formulations of IND and SEM)
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Chosen Plaintext Attack

CPA ‘learning’ phase: A sends C up to g = poly (n) plaintexts
X1,...,Xq € M (possibly adaptively).
C sends back Ency(x1),...,Enck(xq).
Can be combined with other security notions:

CPA phase + SEM phase = SEM-CPA security.
CPA phase + IND phase = IND-CPA security.

IND-CPA <= SEM-CPA. \

Note: deterministic schemes are insecure = need for
randomization.
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Quantum Adversaries

What do we know about quantum adversaries? Shor, Grover &
friends: no RSA, discrete log, etc. But post-quantum crypto
(lattice-based, multivariate, hash signatures etc.)

This is not enough!!!
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Example: Quantum CPA

CPA phase: A and C share a classical channel:
e A sends query: x;;
e C replies with: Enck(x;);
e repeat for i =1,...,q < poly(n) times.

qCPA phase: A and C share a quantum channel:

A sends query: 3, ;axi[x,0)
x, Enci(x))
repeat for i =1,...,q < poly (n) times.

C replies with: >, .oy

12
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Why Quantum Access?

For Hash functions, PRFs etc, quite natural.

But why quantum access to classical parties?
e use of classical schemes as subroutines in complex quantum

protocols;

e quantum party communicates with classical party but
adversary is able to observe state before measurement;

e adversary is able to ‘force’ quantum behaviour in classical

party (frozen smartcard).

What about encryption?
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Fully Quantum Indistinguishability

In [BZ13]?: fqIND phase: A and C share three quantum registers:
e A prepares state:

Z Qxg,x1 ‘XOa X1, 0>

X0,X1
e Cflips b S {0,1} and transforms register to:
Z Qxg,x1 X0, x1, Enck(xp))

X0,X1

e A must guess b.

gIND is unachievable (too strong).

(attack exploits entanglement between ciphertext and plaintext)

2D. Boneh, M. Zhandry: ‘Secure Signatures and Chosen Ciphertext Security
in a Quantum Computing World', CRYPTO 2013. 14
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The Compromise

fqIND-qCPA natural but too strong, but IND-CPA too weak
against quantum adversaries.

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according
to the (classical) IND notion, augmented by a qCPA learning phase.

IND-qCPA is achievable. I

IND-qCPA is strictly stronger than classical IND-CPA.

15
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Unsatisfying...
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The current situation

v v

SEM-CPA SEM-qCPA qSEM-qCPA
<= <=
= =
0 ) 0
IND-CPA IND-qCPA qIND-qCPA ... fqIND-qCPA
weaker stronger

Our contribution!
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The Road to qIND

(only focus on qIND- phase, but also assume a -qCPA phase)

For fqIND-qCPA many assumptions were implicitly made. In our
work, we explore every option: ‘security tree’ of definitions:

eo==
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Model: Type-1 vs. Type-2 Transformations

(1) (2)

|X) |x) | x) |Enc,(x))
UEnc UEnc
1y) (1) |y @ Enc,(x)) 2
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C flips a random bit b S {0,1}, and computes:
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qIND challenge query: A and C are two QPPT machines sharing a
classical channel and a quantum channel.

A sends C two classical, poly-sized descriptions of plaintext states:

¢o) = ZO‘X,O x) [¢1) = ZQX,l |x)
x,0 x,1

C flips a random bit b S {0,1}, and computes:

) = Ugnr |éw) = Zax b [Enck(x
and finally sends ciphertext state [¢) to A.

A's goal is to guess b.

21
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Quantum Indistinguishability

Quantum Indistinguishability (qIND)

For any QPPT adversary A and any |¢) , [¢2) with efficient
classical representations:

PrlA()) = 1 - 5| < negl ().

where [9) = U2 |6p), and b <> {0,1}.

Enc

Quantum Indistinguishability under qCPA (qIND-qCPA)

An encryption scheme is IND-qCPA secure if it is secure according
to the qIND notion, augmented by a qCPA learning phase.

A\

what about quantum semantic security?
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Quantum Semantic Security

Classical Semantic Security under gCPA (SEM-qCPA)

An encryption scheme is SEM-qCPA secure if it is secure according
to the SEM notion, augmented by a qCPA learning phase.

IND-qCPA <= SEM-qCPA. \

IS

—

BOOOOORING...
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Quantum Semantic Security

Classical Semantic Security under gCPA (SEM-qCPA)

An encryption scheme is SEM-qCPA secure if it is secure according
to the SEM notion, augmented by a qCPA learning phase.

IND-qCPA <= SEM-qCPA. \

Proof Idea:
‘=": provide S with A’s code A
through h, impersonate C and use 6 6
IND to argue same prob. —_—

‘<": assume distinguisher A,
choose constant h, then no S can
infere anything w/o ciphertext. BOOOOORING...

23
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Quantum Semantic Security

qSEM challenge query: A sends C challenge template:
a distribution X of classical descriptions of quantum states,
a classical advice function h: M — N,
a classical target function f : M — N.

C samples two copies of |¢) « X;
the first copy gets encrypted to |¢)) = Ugnc |0),
the second copy is used to compute the Type-(1) operator
U,Sl) 2 |x,0) — |x, h(x)), which is then traced out on the first
register obtaining advice state py.

C sends back (|¢) , pn) to A; but S only gets pp.

Goal is to compute U;l) |¢) (where U;l) 2 |x,0) = |x, f(x))) with
good e-approximation (in terms of trace distance).
24
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Quantum Semantic Security

Quantum Semantic Security (qQSEM)

For any efficient quantum adversary A and any small ¢, there exists
an efficient quantum simulator S such that:

|Pr[A(|¢) , pn) wins gSEM | — Pr[S(pp) wins gSEM || < negl (n) )

Quantum Semantic Security under gCPA (qSEM-qCPA)

An encryption scheme is qSEM-qCPA secure if it is secure according
to the gSEM notion, augmented by a qCPA learning phase.

qIND-qCPA < ¢SEM-qCPA. \




Separation Example
IND-qCPA % qIND-qCPA. \
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Separation Example
IND-qCPA % qIND-qCPA. \

Consider [Gol04]® : sample r «* R and use a PRF
f:K xR — M. Then: Enck(x) := (x ® f(r), r).

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is
quantum-secure.

The Goldreich scheme is not qIND-qCPA secure. \

30. Goldreich: ‘Foundations of Cryptography: Volume 2’

26



Impossibility Result

Plaintext Ciphertext
et — Ean — — —
T — k- Fwms ]|
Core andh v ) ﬂ‘"auxiliary
Function randomness data

27



Impossibility Result

Plaintext Ciphertext
e Ean — —
T — k- Fwms ]|
Core andh v ) ﬂ‘"auxiliary
Function randomness data

quasi—length-preserving (QLP): core function is bijective (m = m’).

27



Impossibility Result

Plaintext Ciphertext
e Ean — —
T — k- Fwms ]|
Core andh v ) ﬂ‘"auxiliary
Function randomness data

quasi—length-preserving (QLP): core function is bijective (m = m’).
e Goldreich’s scheme

e OTP

ECB block ciphers

e stream ciphers

27



Impossibility Result

Plaintext Ciphertext
e Ean — —
T — k- Fwms ]|
Core andh v ) ﬂ‘"auxiliary
Function randomness data

quasi—length-preserving (QLP): core function is bijective (m = m’).
e Goldreich’s scheme

e OTP

ECB block ciphers

e stream ciphers

If a symmetric scheme is QLP, then it is not qIND-qCPA secure. \

27



Impossibility Result

Plaintext Ciphertext
e Ean — —
T — k- Fwms ]|
Core and Y ) ﬂ‘"auxiliary
Function randomness data

quasi—length-preserving (QLP): core function is bijective (m = m’).
e Goldreich’s scheme
e OTP

e ECB block ciphers

e stream ciphers

If a symmetric scheme is QLP, then it is not qIND-qCPA secure.

27



The Attack

plaintexts ciphertexts

28



The Attack

T

plaintexts ciphertexts

QLP cipher

Core Function = permutation JT

28



The Attack

Enck/_\

plaintexts ciphertexts

28



The Attack

Enck
plaintexts ciphertexts

T

sapnydwe
sapnydwe

28



The Attack

Enck
plaintexts ciphertexts

- ™

sapnydwe
sapnydwe

28



The Attack

Enck
plaintexts ciphertexts

i B

sapnydwe
sapnydwe

28



The Attack
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M family of quantum-secure pseudorandom permutations (QPRP).
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Secure Construction

M family of quantum-secure pseudorandom permutations (QPRP).

o Generate key: sample (7T77T_1) I

e Encrypt message x: pad with n bits of randomness r and set
y = m(rl[x);
e Decrypt y: truncate the first n bits of m—1(y).

The above scheme is qIND-qCPA secure. \

(Idea of proof: show that for every two plaintext states |¢o) , [¢1),
the trace distance of the states pg, p1 obtained by considering their
encryption under a mixture of every possible key is negligible)
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Conclusions

v v D

SEM-CPA SEM-qCPA qSEM-qCPA
<= <=
> >
0 0 0
IND-CPA IND-qCPA qIND-qCPA ... fqIND-qCPA
( )
weaker stronger

Future directions:
e public-key encryption;
o CCA security;
e slightly different models of qIND or gSEM;
e superposition of keys/randomness;
e patch IND-qCPA = ¢IND-qCPA,;

e ‘fully’ quantum scenario (ongoing work).
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End of this talk
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BZ Attack

(example for 1-bit messages, with normalization amplitudes omitted)

A initializes register to: H|0) ® [0) ® [0) = >, |x,0,0)
and then calls the encryption oracle with unknown bit b. Now:

e if b =0, the state becomes: )" |x,0, Enc(x)) (notice
entanglement between 15t and 3 registers);

e if b =1 instead, the state becomes:
5, 1x,0,Enc(0)) = H [0) & [0) @ [Enc(0)).

Then A applies a Hadamard on the 1% register and measures:

e if b =0, the Hadamard maps the state to a complete mixture,
and the measurement outcome is random:;

o if b =1 instead, the first register is: H?|0) = |0), and the
outcome is 0.
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Equivalence between Type-1 and Type-2
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Equivalence between Type-1 and Type-2
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34



qSEM = gIND

By contradiction: let A be an efficient qIND distinguisher. We show that
there exists an efficient A’ for qSEM which does not admit simulator.
A’ invokes A, which starts a qIND challenge query consisting of two

classical descriptions sp, s of states |dg) , |¢1).

A’ records this template, then prepare his own qSEM challenge template

consisting of:

e as distribution X, the uniform distribution over {sp, s1};
e as advice function h, a constant function (not depending on s, s1);
e as target function f, the identity function f(x) = x.

A’ receives C's response, forwards the ciphertext to A, and observes
output.

Since A recovers b with non-negligible probability, A’ can then
reconstruct the correct |¢p) (having recorded its description) and
compute the output reduced state pr.

Any simulator S, on the other hand, only receives a constant function h,

and then cannot do better than guessing.
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qSEM < gIND

Let A be any QPT adversary against qSEM. Then its circuit has a
short classical representation €.
Then here is a simulator S with the same success probability:

® S receives ¢ as nonuniform advice (this is allowed);
@® then S implements and run A through &;

©® when A produces a ¢SEM challenge template (X, h,f), S
forwards it to C;

@ when C replies with its advice function, S forwards it to A,
together with the encryption of a bogus state;

@ finally, S outputs whatever A does.

The presence of the bogus encryption state instead of the right one
does not affect A’s success probability. In fact, if this were the
case, we could turn S into an efficient distinguisher against qIND.
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The ‘Frozen Smartcard’ Example
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Plaintexts Ciphertext
X
NI+ e TES

secret key k

secret sequence of bits
.0100110[1Jt101.,

time b
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