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Introduction

Let's focus on symmetric-key encryption schemes

We want this thing to be `secure'.
But what does it mean secure?
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Introduction

De�nition Attempt 1

It must be hard, without k , to recover x from Enck(x).

Consider the following: Enck(x1‖x2) = (x1 ⊕ k‖x2).
`We will attack at dawn' ⇒ `5dk8k4s0lQ1ack at dawn'

De�nition Attempt 2

It must be hard, without k, to recover any information about x

from Enck(x).

Consider the OTP: Enck(x) = (x ⊕ k).
`5dk8k4s0lQ1t6ss3hz01' ⇒ Length(x) = 20 Bytes
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Classical Semantic Security

Game-based security: A and S play an interactive game in two
di�erent `worlds' against C.

SEM challenge query: A sends C challenge template:
• a message distribution X on plaintext spaceM,
• an advice function h :M→ N,
• a target function f :M→ N.

C samples x ← X and sends back (Enck(x), h(x)) to A,
but S only gets h(x). The goal is to compute f (x).

Classical Semantic Security (SEM)

For any e�cient adversary A there exists an e�cient simulator S
such that:

|Pr[A(Enck(x), h(x)) = f (x)]− Pr[S(h(x)) = f (x)]| ≤ negl (n) .
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This de�nition is cumbersome.
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Classical Indistinguishability

IND challenge query: A sends C two plaintexts x0, x1 ∈M.

C �ips a random bit b
$←− {0, 1}, computes y ← Enck(xb), and

�nally sends ciphertext y to A.

A's goal is to guess b.

Classical Indistinguishability (IND)

For any e�cient adversary A and any x0, x1 ∈M:∣∣∣∣Pr[A(y) = b]− 1

2

∣∣∣∣ ≤ negl (n) .
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Classical Indistinguishability

Theorem

IND ⇐⇒ SEM.

(many other equivalent formulations of IND and SEM)
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Chosen Plaintext Attack

CPA `learning' phase: A sends C up to q = poly (n) plaintexts
x1, . . . , xq ∈M (possibly adaptively).

C sends back Enck(x1), . . . ,Enck(xq).
Can be combined with other security notions:

CPA phase + SEM phase ⇒ SEM-CPA security.
CPA phase + IND phase ⇒ IND-CPA security.

Theorem

IND-CPA ⇐⇒ SEM-CPA.

Note: deterministic schemes are insecure ⇒ need for
randomization.
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Quantum Adversaries

What do we know about quantum adversaries? Shor, Grover &
friends: no RSA, discrete log, etc. But post-quantum crypto

(lattice-based, multivariate, hash signatures etc.)

This is not enough!!!
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Example: Quantum CPA

CPA phase: A and C share a classical channel:

• A sends query: xi ;

• C replies with: Enck(xi );

• repeat for i = 1, . . . , q ≤ poly (n) times.

qCPA phase: A and C share a quantum channel:

• A sends query:
∑

x ,i αx ,i |x , 0〉
• C replies with:

∑
x ,i αx ,i |x ,Enck(x)〉

• repeat for i = 1, . . . , q ≤ poly (n) times.
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Why Quantum Access?

For Hash functions, PRFs etc, quite natural.

But why quantum access to classical parties?

• use of classical schemes as subroutines in complex quantum
protocols;

• quantum party communicates with classical party but
adversary is able to observe state before measurement;

• adversary is able to `force' quantum behaviour in classical
party (frozen smartcard).

What about encryption?
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Fully Quantum Indistinguishability

In [BZ13]2: fqIND phase: A and C share three quantum registers:

• A prepares state: ∑
x0,x1

αx0,x1 |x0, x1, 0〉

• C �ips b
$←− {0, 1} and transforms register to:∑

x0,x1

αx0,x1 |x0, x1,Enck(xb)〉

• A must guess b.

Theorem

qIND is unachievable (too strong).

(attack exploits entanglement between ciphertext and plaintext)

2D. Boneh, M. Zhandry: `Secure Signatures and Chosen Ciphertext Security

in a Quantum Computing World', CRYPTO 2013. 14
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The Compromise

fqIND-qCPA natural but too strong, but IND-CPA too weak
against quantum adversaries.

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according
to the (classical) IND notion, augmented by a qCPA learning phase.

Theorem

IND-qCPA is achievable.

Theorem

IND-qCPA is strictly stronger than classical IND-CPA.

15



The Compromise

fqIND-qCPA natural but too strong, but IND-CPA too weak
against quantum adversaries.

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according
to the (classical) IND notion, augmented by a qCPA learning phase.

Theorem

IND-qCPA is achievable.

Theorem

IND-qCPA is strictly stronger than classical IND-CPA.

15



The Compromise

fqIND-qCPA natural but too strong, but IND-CPA too weak
against quantum adversaries.

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according
to the (classical) IND notion, augmented by a qCPA learning phase.

Theorem

IND-qCPA is achievable.

Theorem

IND-qCPA is strictly stronger than classical IND-CPA.

15



The Compromise

fqIND-qCPA natural but too strong, but IND-CPA too weak
against quantum adversaries.

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according
to the (classical) IND notion, augmented by a qCPA learning phase.

Theorem

IND-qCPA is achievable.

Theorem

IND-qCPA is strictly stronger than classical IND-CPA.

15



The current situation

Unsatisfying...

Our contribution!
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The Road to qIND

(only focus on qIND- phase, but also assume a -qCPA phase)

For fqIND-qCPA many assumptions were implicitly made. In our
work, we explore every option: `security tree' of de�nitions:
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Model: O vs. C

(O) (C)
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Model: Q vs. c

(Q) (c)
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Model: Type-1 vs. Type-2 Transformations

(1) (2)
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Quantum Indistinguishability

qIND challenge query: A and C are two QPPT machines sharing a
classical channel and a quantum channel.

A sends C two classical, poly-sized descriptions of plaintext states:

|φ0〉 =
∑
x ,0

αx ,0 |x〉 , |φ1〉 =
∑
x ,1

αx ,1 |x〉

C �ips a random bit b
$←− {0, 1}, and computes:

|ψ〉 = U
(2)
Enc |φb〉 =

∑
x ,b

αx ,b |Enck(x)〉 ,

and �nally sends ciphertext state |ψ〉 to A.

A's goal is to guess b.
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Quantum Indistinguishability

Quantum Indistinguishability (qIND)

For any QPPT adversary A and any |φ0〉 , |φ2〉 with e�cient
classical representations:∣∣∣∣Pr[A(|ψ〉) = b]− 1

2

∣∣∣∣ ≤ negl (n) ,

where |ψ〉 = U
(2)
Enc |φb〉, and b

$←− {0, 1}.

Quantum Indistinguishability under qCPA (qIND-qCPA)

An encryption scheme is IND-qCPA secure if it is secure according
to the qIND notion, augmented by a qCPA learning phase.

what about quantum semantic security?
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Quantum Semantic Security

Classical Semantic Security under qCPA (SEM-qCPA)

An encryption scheme is SEM-qCPA secure if it is secure according
to the SEM notion, augmented by a qCPA learning phase.

Theorem

IND-qCPA ⇐⇒ SEM-qCPA.

Proof Idea:
`⇒': provide S with A's code

through h, impersonate C and use

IND to argue same prob.

`⇐': assume distinguisher A,
choose constant h, then no S can

infere anything w/o ciphertext. BOOOOORING...
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Quantum Semantic Security

qSEM challenge query: A sends C challenge template:

• a distribution X of classical descriptions of quantum states,
• a classical advice function h :M→ N,
• a classical target function f :M→ N.

C samples two copies of |φ〉 ← X ;
• the �rst copy gets encrypted to |ψ〉 = UEnc |φ〉,
• the second copy is used to compute the Type-(1) operator

U
(1)
h : |x , 0〉 7→ |x , h(x)〉, which is then traced out on the �rst

register obtaining advice state ρh.

C sends back (|ψ〉 , ρh) to A; but S only gets ρh.

Goal is to compute U
(1)
f |φ〉 (where U

(1)
f : |x , 0〉 7→ |x , f (x)〉) with

good ε-approximation (in terms of trace distance).
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Quantum Semantic Security

Quantum Semantic Security (qSEM)

For any e�cient quantum adversary A and any small ε, there exists
an e�cient quantum simulator S such that:

|Pr[A(|ψ〉 , ρh) wins qSEM ]− Pr[S(ρh) wins qSEM ]| ≤ negl (n)

Quantum Semantic Security under qCPA (qSEM-qCPA)

An encryption scheme is qSEM-qCPA secure if it is secure according
to the qSEM notion, augmented by a qCPA learning phase.

Theorem

qIND-qCPA ⇐⇒ qSEM-qCPA.
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Separation Example

Theorem

IND-qCPA ; qIND-qCPA.

Consider [Gol04]3 : sample r
$←− R and use a PRF

f : K ×R →M. Then: Enck(x) := (x ⊕ fk(r), r).

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is
quantum-secure.

Theorem

The Goldreich scheme is not qIND-qCPA secure.

3O. Goldreich: `Foundations of Cryptography: Volume 2'
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Impossibility Result

quasi�length-preserving (QLP): core function is bijective (m = m′).

• Goldreich's scheme

• OTP

• ECB block ciphers

• stream ciphers

Theorem

If a symmetric scheme is QLP, then it is not qIND-qCPA secure.
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The Attack

|+〉 =
1√
2
|0〉+

1√
2
|1〉 Enck−→ 1√

2
|π(0)〉+

1√
2
|π(1)〉 = |+〉

Easy to distinguish!
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The Solution
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Secure Construction

Π family of quantum-secure pseudorandom permutations (QPRP).

Construction

• Generate key: sample (π, π−1)← Π;

• Encrypt message x : pad with n bits of randomness r and set
y = π(r‖x);

• Decrypt y : truncate the �rst n bits of π−1(y).

Theorem

The above scheme is qIND-qCPA secure.

(Idea of proof: show that for every two plaintext states |φ0〉 , |φ1〉,
the trace distance of the states ρ0, ρ1 obtained by considering their

encryption under a mixture of every possible key is negligible)
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y = π(r‖x);

• Decrypt y : truncate the �rst n bits of π−1(y).

Theorem

The above scheme is qIND-qCPA secure.

(Idea of proof: show that for every two plaintext states |φ0〉 , |φ1〉,
the trace distance of the states ρ0, ρ1 obtained by considering their

encryption under a mixture of every possible key is negligible)
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Conclusions

Future directions:
• public-key encryption;
• CCA security;
• slightly di�erent models of qIND or qSEM;
• superposition of keys/randomness;
• patch IND-qCPA ⇒ qIND-qCPA;
• `fully' quantum scenario (ongoing work).
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End of this talk

Thanks for your attention!

tommaso@gagliardoni.net
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BZ Attack

(example for 1-bit messages, with normalization amplitudes omitted)

A initializes register to: H |0〉 ⊗ |0〉 ⊗ |0〉 =
∑

x |x , 0, 0〉
and then calls the encryption oracle with unknown bit b. Now:

• if b = 0, the state becomes:
∑

x |x , 0,Enc(x)〉 (notice
entanglement between 1st and 3rd registers);

• if b = 1 instead, the state becomes:∑
x |x , 0,Enc(0)〉 = H |0〉 ⊗ |0〉 ⊗ |Enc(0)〉.

Then A applies a Hadamard on the 1st register and measures:

• if b = 0, the Hadamard maps the state to a complete mixture,
and the measurement outcome is random;

• if b = 1 instead, the �rst register is: H2 |0〉 = |0〉, and the
outcome is 0.
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Equivalence between Type-1 and Type-2
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qSEM ⇒ qIND

By contradiction: let A be an e�cient qIND distinguisher. We show that
there exists an e�cient A′ for qSEM which does not admit simulator.
A′ invokes A, which starts a qIND challenge query consisting of two

classical descriptions s0, s1 of states |φ0〉 , |φ1〉.
A′ records this template, then prepare his own qSEM challenge template

consisting of:

• as distribution X , the uniform distribution over {s0, s1};
• as advice function h, a constant function (not depending on s0, s1);

• as target function f , the identity function f (x) = x .

A′ receives C's response, forwards the ciphertext to A, and observes
output.

Since A recovers b with non-negligible probability, A′ can then
reconstruct the correct |φb〉 (having recorded its description) and

compute the output reduced state ρf .

Any simulator S, on the other hand, only receives a constant function h,

and then cannot do better than guessing.
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qSEM ⇐ qIND

Let A be any QPT adversary against qSEM. Then its circuit has a
short classical representation ξ.

Then here is a simulator S with the same success probability:

1 S receives ξ as nonuniform advice (this is allowed);

2 then S implements and run A through ξ;

3 when A produces a qSEM challenge template (X , h, f ), S
forwards it to C;

4 when C replies with its advice function, S forwards it to A,
together with the encryption of a bogus state;

5 �nally, S outputs whatever A does.

The presence of the bogus encryption state instead of the right one
does not a�ect A's success probability. In fact, if this were the

case, we could turn S into an e�cient distinguisher against qIND.
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The `Frozen Smartcard' Example
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