Semantic Security and Indistinguishability in the Quantum World

Tommaso Gagliardoni¹

CASED and EC-SPRIDE and TU Darmstadt

May 6th, 2015 Lugano, Switzerland

¹from a joint work with Andreas Hülsing and Christian Schaffner

🖈 Starring 🛧

🖈 Starring 🛧

A Starring 🛧

The Challenger 🌋

🖈 Starring 🛧

The Challenger 🔊

🖈 Starring 🛧

The Challenger 🌋

The Quantum Power

Let's focus on symmetric-key encryption schemes

Let's focus on symmetric-key encryption schemes

We want this thing to be 'secure'.

Let's focus on symmetric-key encryption schemes

We want this thing to be 'secure'. But what does it mean secure?

It must be hard, without k, to recover x from $Enc_k(x)$.

It must be hard, without k, to recover x from $Enc_k(x)$.

Consider the following: $\operatorname{Enc}_k(x_1 || x_2) = (x_1 \oplus k || x_2)$.

It must be hard, without k, to recover x from $Enc_k(x)$.

Consider the following: $\operatorname{Enc}_k(x_1||x_2) = (x_1 \oplus k||x_2)$. 'We will attack at dawn' \Rightarrow '5dk8k4s0lQ1ack at dawn'

It must be hard, without k, to recover x from $Enc_k(x)$.

Consider the following: $\operatorname{Enc}_k(x_1||x_2) = (x_1 \oplus k||x_2)$. 'We will attack at dawn' \Rightarrow '5dk8k4s0lQ1ack at dawn'

Definition Attempt 2

It must be hard, without k, to recover any information about x from $Enc_k(x)$.

It must be hard, without k, to recover x from $Enc_k(x)$.

Consider the following: $\operatorname{Enc}_k(x_1||x_2) = (x_1 \oplus k||x_2)$. 'We will attack at dawn' \Rightarrow '5dk8k4s0lQ1ack at dawn'

Definition Attempt 2

It must be hard, without k, to recover any information about x from $Enc_k(x)$.

Consider the OTP: $Enc_k(x) = (x \oplus k)$.

It must be hard, without k, to recover x from $Enc_k(x)$.

Consider the following: $\operatorname{Enc}_k(x_1||x_2) = (x_1 \oplus k||x_2)$. 'We will attack at dawn' \Rightarrow '5dk8k4s0lQ1ack at dawn'

Definition Attempt 2

It must be hard, without k, to recover any information about x from $Enc_k(x)$.

Consider the OTP: $Enc_k(x) = (x \oplus k)$. '5dk8k4s0lQ1t6ss3hz01' \Rightarrow Length(x) = 20 Bytes **Game-based security:** \mathcal{A} and \mathcal{S} play an interactive game in two different 'worlds' against \mathcal{C} .

Game-based security: A and S play an interactive game in two different 'worlds' against C. SEM challenge query: A sends C challenge template: Game-based security: \mathcal{A} and \mathcal{S} play an interactive game in two different 'worlds' against \mathcal{C} .

SEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

• a message distribution X on plaintext space \mathcal{M} ,

SEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

- a message distribution X on plaintext space \mathcal{M} ,
- an advice function $h:\mathcal{M} o\mathbb{N},$

Game-based security: \mathcal{A} and \mathcal{S} play an interactive game in two different 'worlds' against \mathcal{C} .

SEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

- a message distribution X on plaintext space \mathcal{M} ,
- an advice function $h:\mathcal{M} o\mathbb{N},$
- a target function $f: \mathcal{M} \to \mathbb{N}$.

SEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

- a message distribution X on plaintext space \mathcal{M} ,
- an advice function $h: \mathcal{M} \to \mathbb{N}$,
- a target function $f: \mathcal{M} \to \mathbb{N}$.

C samples $x \leftarrow X$ and sends back $(Enc_k(x), h(x))$ to A,

SEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

- a message distribution X on plaintext space \mathcal{M} ,
- an advice function $h:\mathcal{M} o\mathbb{N},$
- a target function $f: \mathcal{M} \to \mathbb{N}$.

C samples $x \leftarrow X$ and sends back $(Enc_k(x), h(x))$ to A, but S only gets h(x).

SEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

- a message distribution X on plaintext space \mathcal{M} ,
- an advice function $h:\mathcal{M} o\mathbb{N},$
- a target function $f: \mathcal{M} \to \mathbb{N}$.
 - C samples $x \leftarrow X$ and sends back $(Enc_k(x), h(x))$ to A, but S only gets h(x). The goal is to compute f(x).

SEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

- a message distribution X on plaintext space \mathcal{M} ,
- an advice function $h:\mathcal{M} o\mathbb{N},$
- a target function $f: \mathcal{M} \to \mathbb{N}$.

C samples $x \leftarrow X$ and sends back $(Enc_k(x), h(x))$ to A, but S only gets h(x). The goal is to compute f(x).

Classical Semantic Security (SEM)

For any efficient adversary ${\cal A}$ there exists an efficient simulator ${\cal S}$ such that:

$$|\Pr[\mathcal{A}(\mathsf{Enc}_k(x), h(x)) = f(x)] - \Pr[\mathcal{S}(h(x)) = f(x)]| \le \operatorname{\mathsf{negl}}(n)$$
.

Classical Semantic Security

Classical Semantic Security

This definition is cumbersome.

 \mathcal{C} flips a random bit $b \xleftarrow{\$} \{0,1\}$,

 $\mathcal C$ flips a random bit $b \xleftarrow{\$} \{0,1\}$, computes $y \leftarrow \operatorname{Enc}_k(x_b)$,

C flips a random bit $b \xleftarrow{\$} \{0,1\}$, computes $y \leftarrow \operatorname{Enc}_k(x_b)$, and finally sends ciphertext y to A.

C flips a random bit $b \xleftarrow{\$} \{0,1\}$, computes $y \leftarrow \operatorname{Enc}_k(x_b)$, and finally sends ciphertext y to A.

 \mathcal{A} 's goal is to guess b.

C flips a random bit $b \xleftarrow{\$} \{0,1\}$, computes $y \leftarrow \operatorname{Enc}_k(x_b)$, and finally sends ciphertext y to A.

 \mathcal{A} 's goal is to guess b.

Classical Indistinguishability (IND)

For any efficient adversary \mathcal{A} and any $x_0, x_1 \in \mathcal{M}$:

$$\left| \mathsf{Pr}[\mathcal{A}(y) = b] - rac{1}{2}
ight| \leq \mathsf{negl}(n)$$
 .

Theorem

 $\mathsf{IND} \iff \mathsf{SEM}.$

(many other equivalent formulations of IND and SEM)

CPA 'learning' phase: \mathcal{A} sends \mathcal{C} up to q = poly(n) plaintexts $x_1, \ldots, x_q \in \mathcal{M}$ (possibly adaptively).
CPA 'learning' phase: \mathcal{A} sends \mathcal{C} up to q = poly(n) plaintexts $x_1, \ldots, x_q \in \mathcal{M}$ (possibly adaptively). \mathcal{C} sends back $Enc_k(x_1), \ldots, Enc_k(x_q)$.

CPA phase + SEM phase \Rightarrow SEM-CPA security.

> CPA phase + SEM phase \Rightarrow SEM-CPA security. CPA phase + IND phase \Rightarrow IND-CPA security.

> CPA phase + SEM phase \Rightarrow SEM-CPA security. CPA phase + IND phase \Rightarrow IND-CPA security.

Theorem

 $\mathsf{IND}\operatorname{-CPA} \iff \mathsf{SEM}\operatorname{-CPA}$.

> CPA phase + SEM phase \Rightarrow SEM-CPA security. CPA phase + IND phase \Rightarrow IND-CPA security.

Theorem

 $\mathsf{IND}\operatorname{-CPA} \iff \mathsf{SEM}\operatorname{-CPA}$.

Note: deterministic schemes are insecure \Rightarrow need for randomization.

What do we know about quantum adversaries?

What do we know about quantum adversaries? Shor, Grover & friends: no RSA, discrete log, etc.

What do we know about quantum adversaries? Shor, Grover & friends: no RSA, discrete log, etc. But post-quantum crypto (lattice-based, multivariate, hash signatures etc.)

What do we know about quantum adversaries? Shor, Grover & friends: no RSA, discrete log, etc. But post-quantum crypto (lattice-based, multivariate, hash signatures etc.)

This is not enough!!!

CPA phase: \mathcal{A} and \mathcal{C} share a classical channel:

- A sends query: x_i;
- C replies with: Enc_k(x_i);
- repeat for $i = 1, \ldots, q \leq poly(n)$ times.

CPA phase: \mathcal{A} and \mathcal{C} share a classical channel:

- A sends query: x_i;
- C replies with: Enc_k(x_i);
- repeat for $i = 1, \ldots, q \leq poly(n)$ times.

qCPA phase: \mathcal{A} and \mathcal{C} share a quantum channel:

- \mathcal{A} sends query: $\sum_{x,i} \alpha_{x,i} |x,0\rangle$
- \mathcal{C} replies with: $\sum_{x,i} lpha_{x,i} \ket{x, \operatorname{Enc}_k(x)}$
- repeat for $i = 1, \ldots, q \leq \operatorname{poly}(n)$ times.

But why quantum access to classical parties?

But why quantum access to classical parties?

• use of classical schemes as subroutines in complex quantum protocols;

But why quantum access to classical parties?

- use of classical schemes as subroutines in complex quantum protocols;
- quantum party communicates with classical party but adversary is able to observe state before measurement;

But why quantum access to classical parties?

- use of classical schemes as subroutines in complex quantum protocols;
- quantum party communicates with classical party but adversary is able to observe state before measurement;
- adversary is able to 'force' quantum behaviour in classical party (frozen smartcard).

But why quantum access to classical parties?

- use of classical schemes as subroutines in complex quantum protocols;
- quantum party communicates with classical party but adversary is able to observe state before measurement;
- adversary is able to 'force' quantum behaviour in classical party (frozen smartcard).

What about encryption?

In $[BZ13]^2$: fqIND phase: A and C share three quantum registers:

²D. Boneh, M. Zhandry: 'Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World', CRYPTO 2013.

14

• \mathcal{A} prepares state:

$$\sum_{x_{0},x_{1}} \alpha_{x_{0},x_{1}} | x_{0}, x_{1}, 0 \rangle$$

14

²D. Boneh, M. Zhandry: 'Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World', CRYPTO 2013.

• \mathcal{A} prepares state:

$$\sum_{x_{0},x_{1}}\alpha_{x_{0},x_{1}}\left|x_{0},x_{1},0\right\rangle$$

• C flips $b \stackrel{\$}{\longleftarrow} \{0,1\}$ and transforms register to:

$$\sum_{\mathbf{x}_0, \mathbf{x}_1} \alpha_{\mathbf{x}_0, \mathbf{x}_1} | \mathbf{x}_0, \mathbf{x}_1, \mathsf{Enc}_k(\mathbf{x}_b) \rangle$$

²D. Boneh, M. Zhandry: 'Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World', CRYPTO 2013.

• \mathcal{A} prepares state:

$$\sum_{x_{0},x_{1}}\alpha_{x_{0},x_{1}}\left|x_{0},x_{1},0\right\rangle$$

• C flips $b \stackrel{\$}{\longleftarrow} \{0,1\}$ and transforms register to:

$$\sum_{\mathbf{x}_0, \mathbf{x}_1} \alpha_{\mathbf{x}_0, \mathbf{x}_1} | \mathbf{x}_0, \mathbf{x}_1, \mathsf{Enc}_k(\mathbf{x}_b) \rangle$$

• $\mathcal A$ must guess b.

14

²D. Boneh, M. Zhandry: 'Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World', CRYPTO 2013.

• \mathcal{A} prepares state:

$$\sum_{x_{0},x_{1}} \alpha_{x_{0},x_{1}} | x_{0}, x_{1}, 0 \rangle$$

• \mathcal{C} flips $b \xleftarrow{\$} \{0,1\}$ and transforms register to:

$$\sum_{\mathbf{x}_0, \mathbf{x}_1} \alpha_{\mathbf{x}_0, \mathbf{x}_1} | \mathbf{x}_0, \mathbf{x}_1, \mathsf{Enc}_k(\mathbf{x}_b) \rangle$$

• \mathcal{A} must guess b.

Theorem

qIND is unachievable (too strong).

(attack exploits entanglement between ciphertext and plaintext)

²D. Boneh, M. Zhandry: 'Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World', CRYPTO 2013.

14

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according to the (classical) IND notion, augmented by a qCPA learning phase.

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according to the (classical) IND notion, augmented by a qCPA learning phase.

Theorem

IND-qCPA is achievable.

IND-qCPA

An encryption scheme is IND-qCPA secure if it is secure according to the (classical) IND notion, augmented by a qCPA learning phase.

Theorem

IND-qCPA is achievable.

Theorem

IND-qCPA is strictly stronger than classical IND-CPA.

Unsatisfying...

The current situation

Our contribution!

For fqIND-qCPA many assumptions were implicitly made.

Model: ${\cal O}$ vs. ${\cal C}$

Model: Q vs. c

Model: Type-1 vs. Type-2 Transformations

 ${\mathcal A}$ sends ${\mathcal C}$ two classical, poly-sized descriptions of plaintext states:

$$|\phi_{0}\rangle = \sum_{x,0} \alpha_{x,0} |x\rangle, \qquad |\phi_{1}\rangle = \sum_{x,1} \alpha_{x,1} |x\rangle$$

 ${\mathcal A}$ sends ${\mathcal C}$ two classical, poly-sized descriptions of plaintext states:

$$|\phi_{0}\rangle = \sum_{x,0} \alpha_{x,0} |x\rangle, \qquad |\phi_{1}\rangle = \sum_{x,1} \alpha_{x,1} |x\rangle$$

C flips a random bit $b \xleftarrow{\$} \{0, 1\}$, and computes:

 ${\mathcal A}$ sends ${\mathcal C}$ two classical, poly-sized descriptions of plaintext states:

$$|\phi_{0}\rangle = \sum_{x,0} \alpha_{x,0} |x\rangle, \qquad |\phi_{1}\rangle = \sum_{x,1} \alpha_{x,1} |x\rangle$$

 \mathcal{C} flips a random bit $b \xleftarrow{\$} \{0, 1\}$, and computes:

$$|\psi\rangle = U_{Enc}^{(2)} |\phi_b\rangle = \sum_{x,b} \alpha_{x,b} |\operatorname{Enc}_k(x)\rangle,$$

 ${\mathcal A}$ sends ${\mathcal C}$ two classical, poly-sized descriptions of plaintext states:

$$|\phi_{0}\rangle = \sum_{x,0} \alpha_{x,0} |x\rangle, \qquad |\phi_{1}\rangle = \sum_{x,1} \alpha_{x,1} |x\rangle$$

 $\mathcal C$ flips a random bit $b \xleftarrow{\$} \{0,1\}$, and computes:

$$|\psi\rangle = U_{Enc}^{(2)} |\phi_b\rangle = \sum_{x,b} \alpha_{x,b} |\operatorname{Enc}_k(x)\rangle,$$

and finally sends ciphertext state $|\psi
angle$ to ${\cal A}.$

 ${\mathcal A}$ sends ${\mathcal C}$ two classical, poly-sized descriptions of plaintext states:

$$|\phi_{0}\rangle = \sum_{x,0} \alpha_{x,0} |x\rangle, \qquad |\phi_{1}\rangle = \sum_{x,1} \alpha_{x,1} |x\rangle$$

 $\mathcal C$ flips a random bit $b \xleftarrow{\$} \{0,1\}$, and computes:

$$|\psi\rangle = U_{Enc}^{(2)} |\phi_b\rangle = \sum_{x,b} \alpha_{x,b} |\text{Enc}_k(x)\rangle,$$

and finally sends ciphertext state $|\psi
angle$ to ${\cal A}.$

 \mathcal{A} 's goal is to guess b.

Quantum Indistinguishability (qIND)

For any QPPT adversary A and any $|\phi_0\rangle$, $|\phi_2\rangle$ with efficient classical representations:

$$\left| \mathsf{Pr}[\mathcal{A}(\ket{\psi}) = b] - rac{1}{2}
ight| \leq \mathsf{negl}(n),$$

where $|\psi\rangle = U_{Enc}^{(2)} |\phi_b\rangle$, and $b \xleftarrow{\$} \{0,1\}$.

Quantum Indistinguishability (qIND)

For any QPPT adversary A and any $|\phi_0\rangle$, $|\phi_2\rangle$ with efficient classical representations:

$$\Pr[\mathcal{A}(|\psi\rangle) = b] - \frac{1}{2} \le \operatorname{negl}(n),$$

where
$$\ket{\psi} = U^{(2)}_{\mathit{Enc}} \ket{\phi_b}$$
, and $b \xleftarrow{\$} \{0,1\}$.

Quantum Indistinguishability under qCPA (qIND-qCPA)

An encryption scheme is IND-qCPA secure if it is secure according to the qIND notion, augmented by a qCPA learning phase.

Quantum Indistinguishability (qIND)

For any QPPT adversary A and any $|\phi_0\rangle$, $|\phi_2\rangle$ with efficient classical representations:

$$\Pr[\mathcal{A}(|\psi\rangle) = b] - \frac{1}{2} \le \operatorname{negl}(n),$$

where
$$\ket{\psi} = U^{(2)}_{\mathit{Enc}} \ket{\phi_b}$$
, and $b \xleftarrow{\$} \{0,1\}$.

Quantum Indistinguishability under qCPA (qIND-qCPA)

An encryption scheme is IND-qCPA secure if it is secure according to the qIND notion, augmented by a qCPA learning phase.

what about quantum semantic security?

An encryption scheme is SEM-qCPA secure if it is secure according to the SEM notion, augmented by a qCPA learning phase.

An encryption scheme is SEM-qCPA secure if it is secure according to the SEM notion, augmented by a qCPA learning phase.

Theorem

 $\mathsf{IND}-\mathsf{qCPA} \iff \mathsf{SEM}-\mathsf{qCPA}.$

An encryption scheme is SEM-qCPA secure if it is secure according to the SEM notion, augmented by a qCPA learning phase.

Theorem

 $IND-qCPA \iff SEM-qCPA.$

BOOOOORING...

An encryption scheme is SEM-qCPA secure if it is secure according to the SEM notion, augmented by a qCPA learning phase.

Theorem

 $\mathsf{IND}-\mathsf{qCPA} \iff \mathsf{SEM}-\mathsf{qCPA}.$

Proof Idea:

'⇒': provide S with A's code
through h, impersonate C and use
IND to argue same prob.
'⇐': assume distinguisher A,
choose constant h, then no S can
infere anything w/o ciphertext.

BOOOOORING...

• a distribution X of classical descriptions of quantum states,

Quantum Semantic Security

qSEM challenge query: \mathcal{A} sends \mathcal{C} challenge template:

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h: \mathcal{M} \to \mathbb{N}$,

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h:\mathcal{M}\to\mathbb{N},$
- a classical target function $f : \mathcal{M} \to \mathbb{N}$.

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h:\mathcal{M}\to\mathbb{N},$
- a classical target function $f : \mathcal{M} \to \mathbb{N}$.

 \mathcal{C} samples two copies of $|\phi\rangle \leftarrow X$;

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h:\mathcal{M}\to\mathbb{N},$
- a classical target function $f : \mathcal{M} \to \mathbb{N}$.

 \mathcal{C} samples two copies of $|\phi\rangle \leftarrow X$;

- the first copy gets encrypted to $|\psi
angle = U_{\mathsf{Enc}}\,|\phi
angle,$

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h: \mathcal{M} \to \mathbb{N}$,
- a classical target function $f : \mathcal{M} \to \mathbb{N}$.

 \mathcal{C} samples two copies of $|\phi\rangle \leftarrow X$;

- the first copy gets encrypted to $|\psi
 angle = U_{\mathsf{Enc}}\,|\phi
 angle,$
- the second copy is used to compute the Type-(1) operator $U_h^{(1)}: |x,0\rangle \mapsto |x,h(x)\rangle$, which is then traced out on the first register obtaining advice state ρ_h .

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h: \mathcal{M} \to \mathbb{N}$,
- a classical target function $f : \mathcal{M} \to \mathbb{N}$.

 \mathcal{C} samples two copies of $|\phi\rangle \leftarrow X$;

- the first copy gets encrypted to $|\psi
 angle = U_{\mathsf{Enc}}\,|\phi
 angle,$
- the second copy is used to compute the Type-(1) operator $U_h^{(1)}: |x,0\rangle \mapsto |x,h(x)\rangle$, which is then traced out on the first register obtaining advice state ρ_h .

 ${\cal C}$ sends back $(\ket{\psi},
ho_{\it h})$ to ${\cal A}$

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h: \mathcal{M} \to \mathbb{N}$,
- a classical target function $f : \mathcal{M} \to \mathbb{N}$.

 \mathcal{C} samples two copies of $|\phi\rangle \leftarrow X$;

- the first copy gets encrypted to $|\psi
 angle = U_{\mathsf{Enc}}\,|\phi
 angle,$
- the second copy is used to compute the Type-(1) operator $U_h^{(1)} : |x,0\rangle \mapsto |x,h(x)\rangle$, which is then traced out on the first register obtaining advice state ρ_h .

 \mathcal{C} sends back $(\ket{\psi}, \rho_h)$ to \mathcal{A} ; but \mathcal{S} only gets ρ_h .

- a distribution X of classical descriptions of quantum states,
- a classical advice function $h: \mathcal{M} \to \mathbb{N}$,
- a classical target function $f : \mathcal{M} \to \mathbb{N}$.

 \mathcal{C} samples two copies of $|\phi\rangle \leftarrow X$;

- the first copy gets encrypted to $|\psi
 angle = U_{\mathsf{Enc}}\,|\phi
 angle,$
- the second copy is used to compute the Type-(1) operator $U_h^{(1)}: |x,0\rangle \mapsto |x,h(x)\rangle$, which is then traced out on the first register obtaining advice state ρ_h .

 \mathcal{C} sends back $(|\psi\rangle, \rho_h)$ to \mathcal{A} ; but \mathcal{S} only gets ρ_h .

Goal is to compute $U_f^{(1)} |\phi\rangle$ (where $U_f^{(1)} : |x, 0\rangle \mapsto |x, f(x)\rangle$) with good ϵ -approximation (in terms of *trace distance*).

Quantum Semantic Security (qSEM)

For any efficient quantum adversary A and any small ϵ , there exists an efficient quantum simulator S such that:

 $|\Pr[\mathcal{A}(\ket{\psi},
ho_h) \text{ wins qSEM }] - \Pr[\mathcal{S}(
ho_h) \text{ wins qSEM }]| \le \mathsf{negl}(n)$

Quantum Semantic Security (qSEM)

For any efficient quantum adversary A and any small ϵ , there exists an efficient quantum simulator S such that:

 $|\Pr[\mathcal{A}(\ket{\psi},
ho_h) \text{ wins qSEM }] - \Pr[\mathcal{S}(
ho_h) \text{ wins qSEM }]| \le \mathsf{negl}(n)$

Quantum Semantic Security under qCPA (qSEM-qCPA)

An encryption scheme is qSEM-qCPA secure if it is secure according to the qSEM notion, augmented by a qCPA learning phase.
Quantum Semantic Security (qSEM)

For any efficient quantum adversary A and any small ϵ , there exists an efficient quantum simulator S such that:

 $|\Pr[\mathcal{A}(\ket{\psi}, \rho_h) \text{ wins qSEM }] - \Pr[\mathcal{S}(\rho_h) \text{ wins qSEM }]| \le \mathsf{negl}(n)$

Quantum Semantic Security under qCPA (qSEM-qCPA)

An encryption scheme is qSEM-qCPA secure if it is secure according to the qSEM notion, augmented by a qCPA learning phase.

Theorem

 $qIND-qCPA \iff qSEM-qCPA$.

 $IND-qCPA \Rightarrow qIND-qCPA$.

 $IND-qCPA \Rightarrow qIND-qCPA$.

Consider [Gol04]³ : sample $r \xleftarrow{\$} \mathcal{R}$ and use a PRF $f : \mathcal{K} \times \mathcal{R} \to \mathcal{M}$. Then: $\operatorname{Enc}_k(x) := (x \oplus f_k(r), r)$.

³O. Goldreich: 'Foundations of Cryptography: Volume 2'

 $IND-qCPA \Rightarrow qIND-qCPA$.

Consider [Gol04]³ : sample $r \xleftarrow{\$} \mathcal{R}$ and use a PRF $f : \mathcal{K} \times \mathcal{R} \to \mathcal{M}$. Then: $\operatorname{Enc}_k(x) := (x \oplus f_k(r), r)$.

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is quantum-secure.

³O. Goldreich: 'Foundations of Cryptography: Volume 2'

 $IND-qCPA \Rightarrow qIND-qCPA$.

Consider [Gol04]³ : sample $r \xleftarrow{\$} \mathcal{R}$ and use a PRF $f : \mathcal{K} \times \mathcal{R} \to \mathcal{M}$. Then: $\operatorname{Enc}_k(x) := (x \oplus f_k(r), r)$.

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is quantum-secure.

Theorem

The Goldreich scheme is not qIND-qCPA secure.

³O. Goldreich: 'Foundations of Cryptography: Volume 2'

- Goldreich's scheme
- OTP
- ECB block ciphers
- stream ciphers

- Goldreich's scheme
- OTP
- ECB block ciphers
- stream ciphers

Theorem

If a symmetric scheme is QLP, then it is *not* qIND-qCPA secure.

- Goldreich's scheme
- OTP
- ECB block ciphers
- stream ciphers

Theorem

If a symmetric scheme is QLP, then it is not qIND-qCPA secure.

Easy to distinguish!

Construction

- Generate key: sample $(\pi,\pi^{-1}) \leftarrow \Pi$;
- Encrypt message x: pad with n bits of randomness r and set $y = \pi(r||x)$;
- Decrypt y: truncate the first n bits of $\pi^{-1}(y)$.

Construction

- Generate key: sample $(\pi,\pi^{-1}) \leftarrow \Pi$;
- Encrypt message x: pad with n bits of randomness r and set $y = \pi(r||x)$;
- Decrypt y: truncate the first n bits of $\pi^{-1}(y)$.

Theorem

The above scheme is qIND-qCPA secure.

Construction

- Generate key: sample $(\pi,\pi^{-1}) \leftarrow \Pi$;
- Encrypt message x: pad with n bits of randomness r and set $y = \pi(r||x)$;
- Decrypt y: truncate the first n bits of $\pi^{-1}(y)$.

Theorem

The above scheme is qIND-qCPA secure.

(Idea of proof: show that for every two plaintext states $|\phi_0\rangle$, $|\phi_1\rangle$, the trace distance of the states ρ_0 , ρ_1 obtained by considering their encryption under a mixture of every possible key is negligible)

Conclusions

Conclusions

Future directions:

- public-key encryption;
- CCA security;
- slightly different models of qIND or qSEM;
- superposition of keys/randomness;
- patch IND-qCPA \Rightarrow qIND-qCPA;
- 'fully' quantum scenario (ongoing work).

Thanks for your attention!

tommaso@gagliardoni.net

(example for 1-bit messages, with normalization amplitudes omitted)

 \mathcal{A} initializes register to: $H|0\rangle \otimes |0\rangle \otimes |0\rangle = \sum_{x} |x, 0, 0\rangle$ and then calls the encryption oracle with unknown bit *b*. Now:

- if b = 0, the state becomes: $\sum_{x} |x, 0, \text{Enc}(x)\rangle$ (notice entanglement between 1^{st} and 3^{rd} registers);
- if b = 1 instead, the state becomes: $\sum_{x} |x, 0, \operatorname{Enc}(0)\rangle = H |0\rangle \otimes |0\rangle \otimes |\operatorname{Enc}(0)\rangle.$

Then \mathcal{A} applies a Hadamard on the 1^{st} register and measures:

- if b = 0, the Hadamard maps the state to a complete mixture, and the measurement outcome is random;
- if b = 1 instead, the first register is: $H^2 |0\rangle = |0\rangle$, and the outcome is 0.

Equivalence between Type-1 and Type-2

Type-1 Decryption Oracle

Type-2 Decryption Oracle

$$|z\rangle - U_{\text{Enc}}^{-1} - |\text{Dec}_k(z)\rangle$$

Equivalence between Type-1 and Type-2

Type-2 Decryption Oracle

$qSEM \Rightarrow qIND$

By contradiction: let \mathcal{A} be an efficient qIND distinguisher. We show that there exists an efficient \mathcal{A}' for qSEM which does not admit simulator. \mathcal{A}' invokes \mathcal{A} , which starts a qIND challenge query consisting of two classical descriptions s_0, s_1 of states $|\phi_0\rangle, |\phi_1\rangle$. \mathcal{A}' records this template, then prepare his own qSEM challenge template consisting of:

- as distribution X, the uniform distribution over $\{s_0, s_1\}$;
- as advice function h, a constant function (not depending on s_0, s_1);
- as target function f, the *identity function* f(x) = x.

 \mathcal{A}' receives \mathcal{C} 's response, forwards the ciphertext to $\mathcal{A},$ and observes output.

Since \mathcal{A} recovers b with non-negligible probability, \mathcal{A}' can then reconstruct the correct $|\phi_b\rangle$ (having recorded its description) and compute the output reduced state ρ_f .

Any simulator S, on the other hand, only receives a constant function h, and then cannot do better than guessing. Let $\mathcal A$ be any QPT adversary against qSEM. Then its circuit has a short classical representation ξ .

Then here is a simulator ${\cal S}$ with the same success probability:

- **1** S receives ξ as nonuniform advice (this is allowed);
- **2** then S implements and run A through ξ ;
- when A produces a qSEM challenge template (X, h, f), S forwards it to C;
- when C replies with its advice function, S forwards it to A, together with the encryption of a bogus state;
- ${f 5}$ finally, ${\cal S}$ outputs whatever ${\cal A}$ does.

The presence of the bogus encryption state instead of the right one does not affect \mathcal{A} 's success probability. In fact, if this were the case, we could turn \mathcal{S} into an efficient distinguisher against qIND.

The 'Frozen Smartcard' Example

The 'Frozen Smartcard' Example

The 'Frozen Smartcard' Example

The 'Frozen Smartcard' Example

